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Abstract. We analyze electroproduction of light vector mesons (V = ρ, φ) at small Bjorken-x in an ap-
proach that includes the gluonic generalized parton distributions and a partonic subprocess, γg → (qq̄)g,
qq̄ → V . The subprocess is calculated to lowest order of perturbative QCD taking into account the
transverse momenta of the quark and antiquark as well as Sudakov suppressions. Our approach allows
us to investigate the transition amplitudes for all kinds of polarized virtual photons and polarized vec-
tor mesons. Modeling the generalized parton distributions through double distributions and using simple
Gaussian wavefunctions for the vector mesons, we compute the longitudinal and transverse cross sections
at large photon virtualities as well as the spin-density matrix elements for the vector mesons. Our results
are in fair agreement with the findings of recent experiments performed at HERA.

1 Introduction

Vector-meson electroproduction at large photon virtual-
ity, Q2, has always attracted a lot of theoretical interest.
Its diffractive nature as well as the interesting correlation
between the Q2 and the energy dependence are challeng-
ing issues. At first traditional concepts like vector-meson
dominance (see e.g. [1]) or the Regge model with its promi-
nent pomeron exchange (see e.g. [2]) have been exploited
to analyze the electroproduction data. In 1987 Donnachie
and Landshoff [3] viewed the pomeron as the exchange of
two gluons between the proton and the quark–antiquark
pair created by the virtual photon and which subsequently
form the outgoing meson. Brodsky et al. [4] treated the
two-gluon exchange contribution to electroproduction at
large Q2 and small Bjorken-x, xBj, in the framework of
QCD factorization. They showed that in their approach,
known as the ln(1/xBj) approximation, the emission and
reabsorption of the gluons by the proton can be related to
the usual gluon distribution. Many variants of the leading
ln(1/xBj) approximation can be found in the literature
which differ mainly by the treatment of the subprocess
γ∗g → V g; see [5–8] to name a few. These approaches
describe many features of vector-meson electroproduction
quite well.

In 1996 vector-meson electroproduction has been taken
up by theory again. Exploiting the new concept of general-
ized parton distributions (GPD) [9,10] it has been shown
[9,11] that, at large Q2, the process factorizes into a hard
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parton-level subprocess – meson electroproduction off par-
tons – and soft proton matrix elements which represent
generalized parton distributions. The process is depicted
in Fig. 1 where also the momenta of the involved particles
are specified. It has also been shown in [9,11] that the pro-
cess is dominated by transitions from longitudinally po-
larized photons to longitudinally polarized vector mesons
(L → L) at large Q2; the amplitudes for other transitions
are suppressed by inverse powers of Q. The production of
vector mesons at small xBj ( <∼ 10−2) is controlled by glu-
onic GPDs where quasi-on-shell gluons are emitted and
reabsorbed by the proton. These GPDs which represent
the soft physics embodied in the proton matrix elements,
are unknown as yet and have to be modelled.

Detailed experimental information on electroproduc-
tion of light vector mesons in the region of small xBj is
available from HERA. Cross sections and spin-density ma-
trix elements have been measured by H1 [12] and ZEUS
[13,14]. Despite the sound theoretical basis of the handbag
approach not much has been done as yet in analyzing these
data within this framework. There is only the explorative
study of the longitudinal cross section for ρ production
performed by Mankiewicz et al. [15]. The normalization
of the cross section was however not understood in this
work. Martin et al. [8], on the other hand, started from the
ln (1/xBj) approximation and estimated effects due to the
replacement of the gluon distribution by the correspond-
ing GPD. Here, in this work we attempt a complete and
systematic analysis of the available electroproduction data
at small xBj. In order to analyze the spin-density matrix
elements of the vector mesons we also calculate the ampli-
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tudes for transitions from transversely polarized photons
to transversely and longitudinally polarized vector mesons
(T → T and T → L). We allow for quark transverse mo-
mentum and take into account Sudakov suppressions. As
it will turn out, this approach leads to the correct normal-
ization of the cross sections at finite but large Q2. Infrared
singularities which occur for the T → T transition ampli-
tude in collinear approximation [16], are also regularized in
our approach although in an admittedly model-dependent
way.

The plan of this paper is the following: A kinemati-
cal prelude and the handbag amplitude are presented in
Sect. 2. The amplitudes for the subprocess γ∗g → V g are
discussed in Sect. 3 to leading order of perturbative QCD
and including transverse momenta of the quarks and anti-
quarks making up the meson. The impact parameter rep-
resentations of the full handbag amplitudes for electro-
production of vector mesons are presented in Sect. 4. The
following section, Sect. 5, is devoted to the construction of
the GPDs. Numerical results, obtained from the handbag
approach, for the cross sections of vector-meson electro-
production and for the vector meson’s spin-density matrix
elements are compared to recent experimental results in
the small xBj region in Sects. 6 and 7, respectively. In the
next section, Sect. 8, we discuss the helicity correlation
ALL and the role of the GPD H̃ and summarize in Sect. 9.

2 The handbag factorization

We will work in a photon–proton center of mass (CM)
frame, see Fig. 1, in a kinematical situation where

W 2 = (p + q)2 , (1)

and the virtuality of the incoming photon, q2 = −Q2, are
large while Bjorken’s variable,

xBj = Q2/(2p · q) , (2)

is small (xBj <∼ 10−2). We also assume the square of the
momentum transfer, ∆ = p′ − p, to be much smaller than
Q2.
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Fig. 1. The handbag-type diagram for meson electroproduc-
tion off protons. The large blob represents a GPD while the
small one stands for meson electroproduction off partons. The
momenta of the involved particles are specified

In light-cone components, defined by a± = (a0 ±
a3)/

√
2 and a · b = a+b− +a−b+ −a⊥b⊥, the momenta of

the protons and the photon read

p =
[
(1 + ξ)p̄+,

m2 + ∆2
⊥/4

2(1 + ξ)p̄+ ,−∆⊥
2

]
,

p′ =
[
(1 − ξ)p̄+,

m2 + ∆2
⊥/4

2(1 − ξ)p̄+ ,
∆⊥
2

]
,

q =
[
η(1 + ξ)p̄+,

−Q2 + ∆2
⊥/4

2η(1 + ξ)p̄+ ,
∆⊥
2

]
, (3)

where η equals −xBj up to corrections of order m2/Q2

and ∆2
⊥/Q2. Here, m denotes the mass of the proton.

The average proton momentum is defined by

p̄ =
1
2

(p + p′) , (4)

and the skewness parameter ξ by

ξ =
(p − p′)+

(p + p′)+
. (5)

In the photon–proton CM frame and for small xBj, the
skewness parameter is related to Bjorken-x by

ξ =
xBj

2 − xBj
� xBj/2 . (6)

For Mandelstam t, given by

t = ∆2 = −4ξ2m2 + ∆2
⊥

1 − ξ2 , (7)

a minimal value is implied by the positivity of ∆2
⊥

−tmin = 4m2 ξ2

1 − ξ2 . (8)

Since we are interested in the region of small Bjorken-
x and, hence, small skewness we will use tmin � 0 in the
following. We also will neglect the proton and meson (mV )
masses in the kinematics.

Let us now consider the dynamics of vector-meson elec-
troproduction in the kinematical regime specified above.
The dominant contribution in this kinematical region
comes from the emission and reabsorption of collinear glu-
ons from the protons accompanied by γ∗g → V g scatter-
ing [9]. The neglect of an analogous quark contribution is
justified by the fact that, at small xBj, partons with small
momentum fractions dominantly participate in hard me-
son electroproduction. Since, at small −t, the GPDs are
expected to reflect the magnitudes of the usual parton
distributions the gluon contribution should outweigh the
quark one. This is in particular the case for electropro-
duction of φ mesons where only the small strange quark
content of the proton is probed. Even for the production
of ρ mesons the gluonic contribution seems to be still siz-
able for xBj as large as 0.1 as is indicated by the ratio of
φ and ρ electroproduction cross sections [17].
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The momenta of the gluons which, approximately, are
collinearly emitted or absorbed by the protons, are pa-
rameterized as

kg =
[
(x̄ + ξ)p̄+,

∆2
⊥

8(x̄ + ξ)p̄+ ,−∆⊥/2
]

,

k′
g =

[
(x̄ − ξ)p̄+,

∆2
⊥

8(x̄ − ξ)p̄+ , ∆⊥/2
]

. (9)

In general the partons may have small virtualities of the
order of ∆2

⊥. As usual we have introduced an average par-
ton momentum

k̄ =
1
2
(kg + k′

g) , (10)

and an average momentum fraction

x̄ = k̄+/p̄+ . (11)

In order to facilitate comparison with other work we
also provide the relations between the variables x̄ and ξ
and the usual Mandelstam variables for the hard subpro-
cess. They read (t̂ � 0)

ŝ = (q + kg)2 � x̄ − ξ

2ξ
Q2 ,

û = (q − k′
g)

2 � − x̄ + ξ

2ξ
Q2 , (12)

and they are valid at large Q2 and small ξ.
Radyushkin has calculated the asymptotically leading

handbag contribution to meson electroproduction at small
xBj [9]. As he showed, this contribution involves L → L
transitions. Leaving aside for the time being a poten-
tial breakdown of factorization, Radyushkin’s result can
straightforwardly be generalized to other transitions [16,
18]. The crucial point in the derivation of the handbag am-
plitude is the use of light-cone gauge for the gluon field,
n · Aa = 0, where

n = [0, 1,0⊥] , (13)

and a is a color label. This gauge allows us to express
the gluon field by an integral over the gluon field strength
tensor Ga

νν′ [9,19] (the limit ε̃ → 0 is to be understood):

Aa
ν(z) = nν′

∫ ∞

0
dσe−ε̃σ Ga

νν′(z + σn) . (14)

With the help of this expression one can replace the prod-
ucts of fields appearing in the perturbatively calculated
amplitude for γ∗p → V p by

Aaρ(0) Aa′ρ′
(z̄) =

δaa′

N2
c − 1

×
∑

λ,λ′=±1

ερ(kg, λ) ε∗ρ′
(k′

g, λ
′)

×
∫

dσ dσ′ e−ε̃σ−ε̃′σ′
nω nω′

Ga
νω(σ′n)Ga

ν′ω′(z̄ + σn)

×ε∗ν(kg, λ) εν′
(k′

g, λ
′) , (15)

where we have also made a helicity projection for the glu-
ons. The use of the approximation (9) for the gluon mo-
menta forces the relative distance of the fields on the light
cone z → z̄ = [0, z−,0⊥]. The vectors ε(kg, λ) and ε(k′

g, λ
′)

specify the polarization of the (on-shell) gluons, the cor-
responding momenta, kg and k′

g, are defined in (9). The
first set of polarization vectors in (15) is to be used to con-
tract the hard scattering kernel leading to gauge invariant
parton-level helicity amplitudes HV

µ′λ′,µλ for γ∗g → V g (µ
and µ′ denote the helicities of γ∗ and V , respectively). The
contraction of the field strength tensors with the second
set of polarization vectors leads to [20]

nωnω′
Gνω(σ′n) Gν′ω′(z̄ + σn) ε∗ν(kg, λ) εν′

(k′
g, λ

′)

=
1
2

nωnω′
Gνω(σ′n) Gν′ω′(z̄ + σn) (16)

×
[
(−gνν′

⊥ + λ iενν′
⊥ ) δλλ′ − tνν′

⊥ δλ−λ′
]

,

where

g11
⊥ = g22

⊥ = −ε12⊥ = ε21⊥ = −t11⊥ = t22⊥ = −1,

t12⊥ = t21⊥ = iλ, (17)

while all other components of these tensors are zero. That
only the transverse components in the contraction re-
main is a consequence of the chosen light-cone gauge and
of the fact that the polarization vectors have zero plus-
components in the CM frame we are working in.

Proton matrix elements of the gluon helicity non-flip
contributions gµµ′

⊥ and iεµµ′
⊥ in (16) define the unpolarized,

Hg(x̄, ξ, t) and Eg(x̄, ξ, t), and the polarized, H̃g(x̄, ξ, t)
and Ẽg(x̄, ξ, t), gluon GPDs, respectively [9,10]. The pro-
ton matrix elements of these gluon field operators are re-
lated to the GPDs by

〈p′ν′|
∑
a,a′

Aaρ(0) Aa′ρ′
(z̄)|pν〉

=
1
2

∑
λ=±1

ερ(kg, λ) ε∗ρ′
(k′

g, λ
′)

×
∫ 1

0

dx̄

(x̄ + ξ − iε)(x̄ − ξ + iε)
e−i(x̄−ξ)p·z̄

×
{

ū(p′ν′) n/ u(pν)
2p̄ · n

Hg(x̄, ξ, t)

+
ū(p′ν′) i σαβ nα∆β u(pν)

4m p̄ · n
Eg(x̄, ξ, t)

+λ
ū(p′ν′) n/γ5 u(pν)

2p̄ · n
H̃g(x̄, ξ, t)

+ λ
ū(p′ν′) n · ∆ γ5 u(pν)

4m p̄ · n
Ẽg(x̄, ξ, t)

}
. (18)

Working out the spinor products one sees that for proton
helicity non-flip the linear combinations [20]

Hg(x̄, ξ, t) − ξ2

1 − ξ2 Eg(x̄, ξ, t) (19)
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and

H̃g(x̄, ξ, t) − ξ2

1 − ξ2 Ẽg(x̄, ξ, t) (20)

occur. Since we are interested in small ξ the Eg and Ẽg

terms can safely be neglected in the expressions (19) and
(20). For proton helicity flip, on the other hand, Hg and
H̃g do not contribute but only

−κ

√−t

2m

1
1 − ξ2 Eg ( 2νξẼg ) , (21)

where κ is a phase factor reading

κ =
∆1 + i∆2

|∆⊥| , (22)

for proton momenta of the form (3).
The gluon helicity flip contribution in (16) which de-

fines four more GPDs [21], will be neglected in the fol-
lowing since it is strongly suppressed at small −t. The
mismatch between the proton and gluon helicities in the
proton matrix elements has to be compensated by orbital
angular momentum. For each unit of it a factor

√−t/m
is picked up [21,22]. Further suppression comes from the
subprocess amplitudes which behave as

HV
µ′λ′,µλ ∼ (√−t/Q

)|µ−λ−µ′+λ′|
, (23)

at small −t and from the fact that the amplitude HV
0−λ,µλ

vanishes for µ = ±1 [18].
Combining all this, we finally obtain the helicity am-

plitudes for electroproduction of vector mesons 1:

Mµ′+,µ+ =
e

2
CV

∫ 1

0

dx̄

(x̄ + ξ)(x̄ − ξ + iε)
(24)

× { [ HV
µ′+,µ+ + HV

µ′−,µ−
]

Hg(x̄, ξ, t)

+
[HV

µ′+,µ+ − HV
µ′−,µ−

]
H̃g(x̄, ξ, t)

}
for proton helicity non-flip (explicit helicities are labelled
by their signs) and for helicity flip

Mµ′−,µ+ = −e

2
CV κ

√−t

2m

∫ 1

0

dx̄

(x̄ + ξ)(x̄ − ξ + iε)

× { [ HV
µ′+,µ+ + HV

µ′−,µ−
]
Eg(x̄, ξ, t) (25)

+
[HV

µ′+,µ+ − HV
µ′−,µ−

]
ξẼg(x̄, ξ, t)

}
.

The subprocess amplitudes, HV , are functions of Q2, x̄,
ξ and t. The flavor weight factors, CV , read for ρ and φ
mesons

Cρ =
1√
2

(eu − ed) = 1/
√

2 ; Cφ = es = −1/3 ,

(26)
1 We note in passing that our helicities are light-cone helic-

ities which naturally occur in the handbag approach. The dif-
ference to the usual CM frame helicities is of order m

√−t/W 2

[21] and can be ignored in the kinematical region of interest in
this work.

Fig. 2. Lowest order Feynman graphs for the subprocess
γ∗g → V g

where ei denotes the quark charge in units of the positron
charge e. The remaining helicity amplitudes are obtained
with the help of parity invariance,

M−µ′−ν′,−µ−ν = (−1)µ−ν−µ′+ν′ Mµ′ν′,µν . (27)

An analogous relation holds for the subprocess ampli-
tudes.

3 The partonic subprocess γ∗g → V g

The parton-level amplitudes for the subprocess γ∗g → V g
are calculated from the Feynman graphs shown in Fig. 2;
the outgoing qq̄ pair is to be combined into the vector me-
son regarding its quantum numbers. This is conveniently
done by means of a covariant spin wavefunction. As is
well known from analyses of hadron form factors at large
momentum transfer, leading-twist perturbative calcula-
tions are instable in the end-point regions since the con-
tributions from large transverse separations, b, of quark
and antiquark forming the meson are not sufficiently sup-
pressed. In order to eliminate that defect Li and Sterman
[23] retained the quark transverse degrees of freedoms and
took into account Sudakov suppressions. Including, in ad-
dition, meson wavefunctions with their intrinsic transverse
momentum dependence instead of distribution amplitudes
[24], the perturbative contributions to form factors can
reliably and self-consistently be calculated, the end-point
regions are strongly damped.

Since the subprocess γ∗g → V g bears resemblance to
the meson form factors it is tempting to apply this so-
called modified perturbative approach also here in order
to suppress the contributions from the soft end-point re-
gions and, simultaneously, to regularize this way infrared
divergencies that may occur in the T → L and T → T am-
plitudes [16]. The modified perturbative approach applied
to the subprocess, is, to some extent, similar to the mech-
anism proposed in [6] for the suppression of the leading-
twist gluon contribution to hard meson electroproduction.
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It is however to be stressed that in [6] the leading ln(1/xBj)
approximation of [4] has been utilized.

Let us now turn to the description of the soft qq̄ → V
transtion matrix element. We start from a frame where
the hadron rapidly moves along the 3-direction (q′ =
[0, q′−,0⊥] with q′− � Q/(2

√
ξ)). This frame is termed

the hadron-out one. The momenta of the quark and the
antiquark which form the valence Fock state of the meson
are parameterized as

qµ
1 = τq′µ + kµ

1 , qµ
2 = τ̄ q′µ + kµ

2 , (28)

where

k1 = [k+
1 , 0,k1⊥] , k2 = [k+

2 , 0,k2⊥] . (29)

The variables τ and τ̄ are the usual fractions of the light-
cone minus-component of the meson’s momentum the con-
stituents carry. Momentum conservation provides the con-
straints

τ̄ = 1 − τ , k2⊥ = −k1⊥ ≡ −k⊥ . (30)

It can be shown [25] that the variables τ, τ̄ and k⊥
are invariant under all kinematical Poincaré transforma-
tions, i.e. under boosts along and rotations around the
3-direction as well as under transverse boosts. Moreover
– and this is an important point – the light-cone wave-
function associated with the valence Fock state, ΨV =
ΨV (τ,k⊥), is independent of the hadron’s momentum and
is invariant under these kinematical transformations too.
The light-cone wavefunction may differ for longitudinally
and transversally polarized vector mesons [26].

As is customary in the parton approach we neglect
the binding energy. That possibly crude approximation
can be achieved by putting the individual k+

j components
to zero. In fact starting from a parameterisation of the
various momenta in the meson’s rest frame and boosting
to the hadron-out frame, one sees that the k+

j components
are of order m2

V /q′−. The plus-component of the difference
of the momenta

K =
1
2

(k1 − k2) , (31)

is zero with this choice of k+
j components and, hence,

K = [0, 0,k⊥] , (32)

and q′ · K = 0. The quarks are treated as massless in the
hadron-out frame; they are not strictly on-shell.

It is convenient to couple the spinors representing
quark and antiquark in a covariant spin wavefunction for
the vector meson. The Dirac indices of it (omitted for
convenience) are to be contracted with the corresponding
ones of the hard scattering kernel (see below). For the con-
struction of the spin wave function we adapt the method
presented in [27] (see also [28]) straightforwardly to vec-
tor mesons. The product of spinors v(q2)ū(q1) is boosted
to the hadron’s rest frame, coupled there into the quan-
tum numbers of the vector meson and boosted back to

hadron-out frame. Separating terms with and without K
and neglecting terms ∝ K2, one arrives at

ΓV = ΓV 0 + ∆ΓV αKα , (33)

where

ΓV 0 =
1√
2

(q/′ + mV ) ε/V , ∆Γα =
1

MV
{ΓV 0, γα} .

(34)
The polarization state of the meson is described by the
vector ε. The soft physics parameter MV is of order mV ;
its model dependence results from the specific treatment
of the quarks in the meson’s rest frame. In the following
we will use MV = mV for simplicity but we will comment
on other choices of it.

Since the anticommutator {ΓV 0, q/
′} is zero the 4-vector

K is only determined up to a multiple of the meson mo-
mentum. This property can be used to identify Kµ, given
in (32), with the quark–antiquark relative momentum

Kµ → 1
2
(q1 − q2) , (35)

where the parton momenta, qi, are defined in (28). This
choice, although not forced, is very convenient. Its main
advantage is that Kµ now represents one unit of orbital
angular momentum in a covariant manner [27]. As dis-
cussed in this article, the relative momentum (35) is a
4-transverse vector defined by Kµ

⊥ = Kµ − q′ · K/m2
V q′µ.

In the hadron-out frame and up to corrections of order
m2

V /q′−, K⊥ = K. In the meson’s rest frame on the other
hand, clearly K⊥ = (0,k), and one has an object trans-
forming as a 3-vector under the three-dimensional rotation
group O(3).

One of the basis ingredients of the hard scattering pic-
ture is the collinear approximation which says that all
constituents move along the same direction as their par-
ent hadron up to a scale of the order of the Fermi mo-
tion 〈k2

⊥〉 which typically amounts to a few 100 MeV. The
(nearly) collinear kinematics justifies an expansion of the
spin wavefunction upon a power series in k⊥ or, in order to
retain a covariant formulation, in Kµ. Up to terms linear
in Kµ this expansion is given above for vector mesons.

The transformation from the hadron-out frame to our
CM frame, where the meson momentum has a transverse
component −∆⊥/2, is executed by a transverse boost (cf.
e.g. [29]) that leaves the minus-component of any momen-
tum vector a unchanged and which involves a parameter
d− and a transverse vector d⊥; it is defined by

[ a+, a−,a⊥] (36)

−→
[

a+ − a⊥ · d⊥
d− +

a− d 2
⊥

2 (d−)2
, a− ,a⊥ − a−

d− d⊥

]
.

The transverse boost is one of the kinematical Poincaré
transforms that leaves the hadron wavefunction invariant.
Taking for the parameters d− = q′− and d⊥ = ∆⊥/2,
we readily find from (28) the expressions for the quark
momenta and the relative momentum in the CM frame.
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Provided the quark transverse momenta are taken into
account, the general structure of the γ∗g → V g amplitude
is

HV =
∫

dτd2k⊥
16π3 ΨV (τ, k2

⊥) Tr [ΓV TH] . (37)

The hard scattering kernel, TH = TH(τ, x̄, Q2, K, t), can
be written as follows:

TH = T0(τ, x̄, Q2, k2
⊥, t) + ∆Tµ(τ, x̄, Q2, k2

⊥, t)Kµ + . . .
(38)

Terms ∝ KµKν (and higher) in the numerator are ne-
glected while, in the spirit of the modified perturbative
approach [23], the k2

⊥ terms in the denominators are kept.
Inserting (38) as well as the spin wavefunction (33) into
(37), one obtains

HV =
∫

dτd2k⊥
16π3 ΨV (τ, k2

⊥)

× Tr [ΓV 0 T0 + ∆ΓV α T0 Kα (39)

+Γ0 ∆Tβ Kβ + ∆ΓV α ∆ Tβ Kα Kβ + . . .
]

.

Obviously, the terms ∝ Kµ integrate to zero while the
KµKν term survives the k⊥-integration. Hence,

HV =
∫

dτ
dk2

⊥
16π2 ΨV (τ, k2

⊥)

× Tr
{

ΓV 0T0 − 1
2
k2

⊥gαβ
⊥ ∆ΓV α ∆Tβ + . . .

}
, (40)

where g⊥ is the transverse metric tensor defined in (17).
In order to simplify matters we only take into account the
first non-zero term in this expansion for each amplitude,
i.e. we neglect any correction of order mV or k2

⊥ to its
leading term2. As we said above we however retain the k2

⊥
terms in the denominators of the propagators. Moreover,
any t dependence of the subprocess amplitudes is ignored
except the factors of

√−t required by angular momentum
conservation. This is justified in the small t region we are
interested in.

For longitudinally polarized vector mesons the first
term in (40) contributes, the other term represents a k2

⊥
correction to it which we, according to our strategy, ne-
glect as well as all other terms indicated by the ellipses.
For transversely polarized mesons, on the other hand, the
first term in (40) disappears since the number of γ matri-
ces in the trace is odd3. The second term in (40), ∝ k2

⊥,
contributes in this case; it scales as ∝ k2

⊥/(mV Q); see (34).
Combining this property with the behavior of the subpro-
cess amplitudes near the forward direction (23) and uti-
lizing the fact that 〈k2

⊥〉1/2/mV is of order 1, the various
photon–meson transitions respect the following hierarchy:

L → L : HV
0 λ,0 λ ∝ 1 ,

2 Note that the hard scattering kernel TH does not depend
on the vector-meson mass; it occurs through the spin wave-
function.

3 We remind the reader that for longitudinally polarized vec-
tor mesons ε(0) = q′/mV up to corrections of order mV /q′−.

T → L : HV
0 λ,+λ ∝

√−t

Q
,

T → T : HV
+λ,+λ ∝ 〈k2

⊥〉1/2

Q
,

L → T : HV
+λ,0 λ ∝

√−t

Q

〈k2
⊥〉1/2

Q
,

T → −T : HV
−λ,+λ ∝ −t

Q2

〈k2
⊥〉1/2

Q
. (41)

This hierarchy propagates to the proton non-flip ampli-
tudes for the full process and justifies the neglect of L → T
and T → −T transitions in the analysis. The amplitudes
for proton helicity flip have an extra factor

√−t/m; see
(25). Our interest in this work is focused on unpolarized
protons. In the corresponding cross sections there is no
interference between flip and non-flip amplitudes. Hence,
proton flip is suppressed by a factor of t and since there
is no theoretical or phenomenological indication that |Eg|
is much larger than Hg [22], neglected by us. Information
on the proton flip amplitudes may be extracted from the
data on meson electroproduction with polarized protons.
As a last simplification we neglect contributions from H̃g

in the evaluation of the amplitudes. Since in the forward
limit, ξ, t → 0, Hg and H̃g reduce to x̄g(x̄) and x̄∆g(x̄),
respectively, it is plausible that the relative size of ∆g and
g is reflected in that of H̃g and Hg at small ξ and −t. Since
|∆g(x̄)| is much smaller than g(x̄) the contribution from
H̃g can safely be neglected. The model GPDs we are go-
ing to construct in Sect. 5 do indeed respect this assertion.
As a consequence of parity invariance, see (24) and (27),
there is anyway no contribution from the GPD H̃g to the
most important amplitude, L → L. Care is required for
observables for which the contribution from Hg partially
if not totally cancels. An example of such an observable
is the correlation of the electron and proton helicities. We
will comment on this observable in Sect. 8.

The hard scattering amplitudes for the three helicity
configurations we keep in our analysis are to be calculated
from the Feynman graphs shown in Fig. 2. The results for
the relevant sums and differences of positive and negative
gluon helicities can be cast into the following form:

HV
µ′+,µ+ ± HV

µ′−,µ− =
8παs(µR)√

2Nc

(42)

×
∫ 1

0
dτ

∫
d 2k⊥
16π3 ΨV µ′(τ, k2

⊥) (x̄2 − ξ2) f±
µ′µD ,

where the product of propagator denominators reads

D−1 =
(
k2

⊥ + τ̄ Q2) (
k2

⊥ + τ Q2)
× (

k2
⊥ − τ̄ (x̄ − ξ) Q2/(2 ξ) − iε

)
× (

k2
⊥ + τ̄ (x̄ + ξ) Q2/(2 ξ)

)
× (

k2
⊥ + τ (x̄ + ξ) Q2/(2 ξ)

)
× (

k2
⊥ − τ (x̄ − ξ) Q2/(2 ξ) − iε

)
. (43)



S.V. Goloskokov, P. Kroll: Meson electroproduction 287

Here, NC denotes the number of colors. The functions f±
µ′µ

read

f+
00 = Q11 (x̄2 − ξ2)

τ2τ̄2

4 ξ4 ,

f+
0+ = Q10

√
−t

2
(x̄2 − ξ2)1/2 τ2τ̄2

2ξ3 ,

f+
++ = − k2

⊥
mV

Q10 τ τ̄

8 ξ4 [x̄2 − ξ2 − 2τ τ̄ (x̄2 + ξ2)] ,

f−
++ =

k2
⊥

mV
Q10 τ2τ̄2

2 ξ3 x̄ ,

f−
00 = f−

0+ = 0 . (44)

Following [23], we retain k2
⊥ terms in the denominators of

the propagators (43). These terms play an important role
since they compete with terms ∝ τ(τ̄)Q2 which become
small in the end-point regions where either τ or τ̄ tends to
zero. They lead to the suppression of contributions with
large quark–antiquark separations as we mentioned above.

In collinear approximation and utilizing distribution
amplitudes up to twist-3 accuracy the subprocess ampli-
tudes for T → T transitions are infrared divergent, signal-
ing the breakdown of factorization [16]. Neglecting trans-
verse momenta in (43), one finds

HV
++,++ + HV

+−,+−

∼
∫

dτ

τ2τ̄2

x̄2 − ξ2 − 2τ τ̄(x̄2 + ξ2)
x̄2 − ξ2

×
∫

dk2
⊥ k2

⊥ ΨV T(τ, k2
⊥) . (45)

Assuming for instance a Gaussian wavefunction, ΨV T ∼
exp [a2

V Tk2
⊥/(τ τ̄)], an ansatz that has been shown to work

successfully in many cases (see for instance [24]) and will
be used by us in the numerical analysis of meson electro-
production, we find that in fact the τ integral is regular.
As pointed out in [16], the x̄ integral in (24) may not exist
due to the double pole (x̄−ξ+iε)−2 occurring. Whether or
not this happens depends on the properties of the GPDs.
In Sect. 5 we will take up this problem again.

One may also consider a transverse momentum depen-
dence of the GPDs. That issue has been investigated in
[30] for meson electroproduction at intermediate values
of xBj. In this kinematical region the emission and reab-
sorption of quarks from the proton dominates. We how-
ever think that the k⊥ dependence of the GPDs is of mi-
nor importance. In contrast to the meson where the hard
process enforces the dominance of the compact valence
Fock state of the meson, all proton Fock states contribute
to the GPDs at small −t [20,22]. If the gluons are dis-
tributed in the proton like the quarks, an assumption that
is supported by the slope of the diffraction peak in elastic
proton-proton scattering, the k⊥ dependence of the GPD
Hg should roughly reflect the charge radius of the pro-
ton (〈k2

⊥〉1/2 � 200 MeV). Consequently, we expect Hg to
be only mildly dependent on the transverse momentum, a
potential effect we neglect.

4 The impact parameter space

Transverse momenta in the subprocess amplitudes, see
Sect. 3, imply finite quark–antiquark separations in the
configuration space which are accompanied by gluon ra-
diation. On the grounds of previous work by Collins and
Soper [31], Sterman and collaborators [23] calculated this
radiation to next-to-leading-log approximation using re-
summation techniques and having recourse to the renor-
malization group. The result is a Sudakov factor which
suppresses large quark–antiquark separations and which
we also have to take into account in our analysis in order
to have consistency with the retention of the transverse de-
grees of freedom. Since the Sudakov factor is given in the
transverse separation or impact parameter space – only in
this space the gluonic radiative corrections exponentiate
– we have to work in this space.

The two-dimensional Fourier transformation between
the canonical conjugated b and k⊥ spaces is defined by

f̂(b) =
1

(2π)2

∫
d 2 k⊥ exp [−ik⊥ · b ] f(k⊥) . (46)

For the meson wavefunctions we adopt the same Gaussian
parameterization as is used for the pion [24,32]:

ΨV i(τ, k2
⊥) = 8π2

√
2Nc fV i a2

V i exp
[
−a2

V i

k 2
⊥

τ τ̄

]
(47)

(i = L, T), which strictly speaking represents full wave-
functions with their perturbative tails removed. Trans-
verse momentum integration of these wavefunctions leads
to the associated distribution amplitudes which represent
the soft hadronic matrix elements entering the calculations
within the collinear factorization approach. Actually, the
wavefunction (47) leads to the so-called asymptotic meson
distribution amplitude:

ΦAS = 6τ τ̄ . (48)

For the decay constants fV L of longitudinally polarized
vector mesons we take the values [33]

fρ L = 0.216 GeV , fφ L = 0.237 GeV . (49)

The decay constants for transversely polarized vector
mesons are almost unknown. The only available informa-
tion comes from QCD sum rules. In [26] fρ T has been es-
timated to be (160±10) MeV. We actually fit these decay
constants to experiment. Identifying for instance the soft
parameter MV in the spin wavefunction with the meson
mass, we obtain

fρ T = 0.250 GeV , fφ T = 0.275 GeV . (50)

Choosing MV to be smaller than the meson mass results in
smaller values of the decay constants fV T. The transverse
size parameters aV L are fixed by the requirement of equal
probabilities for the vector meson and pion valence Fock
states, namely 0.25. This leads to

aρ L = 0.52 GeV−1 , aφ L = 0.45 GeV−1 . (51)
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The transverse size parameters for transversely polarized
vector mesons are adjusted to experiment. The numerical
results we are going to present below are obtained with

aρ T = 0.65 GeV−1 , aφ T = 0.60 GeV−1 . (52)

With the parameter values quoted in (49) and (51) the
RMS transverse momenta, evaluated from (47), amount
to 0.61 GeV and 0.67 GeV for the longitudinally polarized
ρ and φ mesons, respectively. These values are much larger
than the one for the proton RMS transverse momentum.

The Fourier transform of the meson wavefunction (47)
reads

Ψ̂V i(τ, b2) = 2π
fV i√
2Nc

ΦAS(τ) exp
[
−τ τ̄

b2

4a2
V i

]
. (53)

The product of the propagator denominators D (43) can
be decomposed into single-pole terms which are either of
the form

T1 =
1

k2
⊥ + d1Q2 , (54)

or
T2 =

1
k2

⊥ − d2(x̄ − ξ)Q2 − iε̂
. (55)

where di ≥ 0. The Fourier transforms of these pole terms
can readily be obtained:

T̂1 =
1
2π

K0(
√

d1bQ) ,

T̂2 =
1
2π

K0

(√
d2(ξ − x̄)bQ

)
θ(ξ − x̄)

+
i
4

H
(1)
0

(√
d2(x̄ − ξ)bQ

)
θ(x̄ − ξ) , (56)

where K0 and H
(1)
0 are the zeroth order modified Bessel

function of the second kind and the Hankel function, re-
spectively.

Putting all this together and including the Sudakov
factor, exp[−S(τ, b, Q)], the gluonic contributions to the
helicity amplitudes for vector-meson electroproduction
read

Mµ′+,µ+ = MH
µ′+,µ+ + MH̃

µ′+,µ+,

MH
µ′+,µ+ =

e√
2Nc

CV

∫
dx̄dτf+

µ′µHg(x̄, ξ, t)

×
∫

d 2bΨ̂V µ′(τ, b2)D̂(τ, Q, b) αs(µR)

× exp [−S(τ, b, Q)],

MH̃
µ′+,µ+ =

e√
2Nc

CV

∫
dx̄dτf−

µ′µH̃g(x, ξ, t)

×
∫

d 2bΨ̂V µ′(τ, b2)D̂(τ, Q, b) αs(µR)

× exp [−S(τ, b, Q)], (57)

which is the b-space version of the amplitude (24). The
functions D and f±

µ′µ are given in (43) and (44). Since the

Fourier transformed wavefunctions, the product of propa-
gator denominators as well as the Sudakov factor, only de-
pend on b, the angle integration in the last integral is triv-
ial and a three-dimensional integral (dx̄dτb db) remains to
be evaluated numerically. Parity invariance (27) leads to
the following relations among the amplitudes4:

MH
++,++ = MH

−+,−+ , MH
0+,++ = −MH

0+,−+ ,

MH̃
++,++ = −MH̃

−+,−+ , MH̃
0+,++ = MH̃

0+,−+ ,

(58)

The Sudakov exponent S in (57) is given by [23]

S(τ, b, Q) = s(τ, b, Q) + s(τ̄ , b, Q) − 4
β0

ln
ln (µR/ΛQCD)

b̂
,

(59)
where a Sudakov function s occurs for each quark line
entering the meson, and the abbreviation

b̂ = − ln (bΛQCD) , (60)

is used. The last term in (59) arises from the application of
the renormalization group equation (β0 = 11− 2

3nf ) where
nf is the number of active flavors, taken to be 3. A value of
220 MeV for ΛQCD is used here and in the evaluation of αs
from the one-loop expression. The renormalization scale
µR is taken to be the largest mass scale appearing in the
hard scattering amplitude, i.e. µR = max (τQ, τ̄Q, 1/b).
For small b there is no suppression from the Sudakov fac-
tor; as b increases, the Sudakov factor decreases, reaching
zero at b = 1/ΛQCD. For even larger b the Sudakov is set
to zero5. The Sudakov function s reads

s(τ, b, Q) =
8

3β0

(
q̂ ln

(
q̂

b̂

)
− q̂ + b̂

)
+ NLL-terms , (61)

where
q̂ = ln

(
τQ/(

√
2ΛQCD)

)
. (62)

Actually we do not use the explicit form of the next-to-
leading-log corrections quoted in [23] but those given in
[35]. The latter ones contain some minor corrections which
are hardly relevant numerically. Due to the properties of
the Sudakov factor any contribution to the amplitudes
is damped asymptotically, i.e. for ln(Q2/Λ2

QCD) → ∞, ex-
cept those from configurations with small quark–antiquark
separations. b plays the role of an infrared cut-off; it sets
up the interface between non-perturbative soft gluon con-
tributions – still contained in the hadronic wavefunction
– and perturbative soft gluon contributions accounted for
by the Sudakov factor.

4 The same relations as for the Hg terms also hold for the t-
channel exchange of a particle with natural parity, P = (−1)J .
The relations for the H̃g terms in (57) corresponds to those
obtained for an unnatural parity exchange [34].

5 The definition of the Sudakov factor is completed by the
following rules [23]: exp [−S] = 1 if exp [−S] ≥ 1, exp [−S] = 0
if b ≥ 1/ΛQCD and s(β, b, Q) = 0 if b ≤ √

2/βQ.
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5 Modeling the GPDs

In order to calculate the electroproduction amplitudes
(24) we still need the gluon GPDs. A model for them can
be constructed with the help of double distributions [36]
which guarantee polynomiality of the GPDs. The gluonic
double distribution f(β, α, t � 0) is customarily parame-
terized as

f(β, α, t � 0) (63)

= g(β)
Γ (2n + 2)

22n+1 Γ 2(n + 1)
[(1 − |β|)2 − α2]n

(1 − |β|)2n+1 ,

where g(x) is the usual gluon distribution. Its definition
is extended to negative β by

g(−β) = −g(β) . (64)

A popular choice of n is 1 for quarks and 2 for gluons.
This is motivated by the interpretation of the α depen-
dence like a meson distribution amplitude for hard ex-
clusive processes. The cases n = 1 and 2 correspond to
the asymptotic behavior of a quark distribution ampli-
tude ∝ (1 − α2) and for gluons ∝ (1 − α2)2, respectively.
This correspondence is not demanded by theory. There-
fore, we will consider both the cases, n = 1 and 2, for the
construction of the gluon GPD. A parameterization of the
t dependence of f is difficult. The multiplication of f as
given in (63) by a t-dependent form factor, although fre-
quently used in default of a better idea, is unsatisfactory.
Parameterizations of the GPDs [37,38] as well as results
from lattice QCD [39] revealed that a factorization of f in
β, α on the one hand and in t on the other hand is most
likely incorrect. Fortunately, the knowledge of the GPDs
at t � 0 suffices for our purposes as will become clear in
Sect. 6.

According to [36], the GPD Hg is related to the double
distribution by (since we will only work with GPDs at
t � 0 we omit the variable t in the GPDs in the following)

Hg(x̄, ξ)

=
[

Θ(0 ≤ x̄ ≤ ξ)
∫ x1

x3

dβ + Θ(ξ ≤ x̄ ≤ 1)
∫ x1

x2

dβ

]

×β

ξ
f

(
β, α =

x̄ − β

ξ

)

+ξ Dg

(
x̄

ξ

)
. (65)

The definition of Hg is completed by noting that it is an
even function of x̄:

Hg(−x̄, ξ) = Hg(x̄, ξ) . (66)

The integration limits in (65) are given by

x1 =
x̄ + ξ

1 + ξ
, x2 =

x̄ − ξ

1 − ξ
, x3 =

x̄ − ξ

1 + ξ
. (67)

The limit x1(x2) is the momentum fraction the emitted
(reabsorbed) gluon carries with respect to the incoming

(outgoing) proton. The last term in the definition (65) is
the so-called D-term [40]. Its support is the region −ξ ≤
x̄ ≤ ξ and it ensures the correct polynomiality property
of the GPD. Since the D term is ∝ ξ and our interest lies
in small skewness, we neglect it.

We take the gluon distribution from the NLO
CTEQ5M results [41] and use an interpolation of it which
has been proposed in [42] and which is valid in the range
Q2

0 = 4 GeV2 ≤ Q2 ≤ 40 GeV2,

βg(β) = β−δ(Q2) (1 − β)5
2∑

i=0

ci β i/2 , (68)

where

c0 = 1.94 , c1 = −3.78 + 0.24 ln (Q2/Q2
0) ,

c2 = 6.79 − 2.13 ln (Q2/Q2
0) . (69)

This is a very good approximation to the CTEQ gluon
distribution for β ≤ 0.5. At the largest value of Q2 we are
going to use the interpolation (68), namely 40 GeV2, and
for β � 0.2 it deviates less than 5% from the CTEQ gluon
distribution. For values of β in the range 10−4–10−1, the
interpolation (68) agrees with the CTEQ gluon distribu-
tion within 1%. In this region the Q2 dependence of δ is
approximately given by

δ(Q2) = 0.17 + 0.07 ln (Q2/Q2
0) − 0.005 ln2 (Q2/Q2

0) .
(70)

The parameterization (68), (69) and (70) effectively takes
into account the evolution of the gluon distribution in a
large but finite range of Q2 as calculated in [41]. At small
β the gluon distribution has a typical error of about 15%
[41]. Within this error there is agreement with the analy-
sis presented in [42]. An error assessment of the power δ
provides an uncertainty of about 10–15% for it [41,42].

For the various terms in the ansatz (68) the integra-
tions occurring in (65) can be performed analytically [36].
One finds

H1i(x̄, ξ) =
3

2ξ3

Γ (1 + i/2 − δ)
Γ (4 + i/2 − δ)

×
{

(ξ2 − x̄)
[
x

2+i/2−δ
1 − x

2+i/2−δ
2

]
+ξ(1 − x̄)(2 + i/2 − δ)

[
x

2+i/2−δ
1 + x

2+i/2−δ
2

] }
,

x̄ ≥ ξ ,

=
3

2ξ3

Γ (1 + i/2 − δ)
Γ (4 + i/2 − δ)

×
{

x
2+i/2−δ
1

[
ξ2 − x̄ + (2 + i/2 − δ)ξ(1 − x̄)

]
+(x̄ → −x̄) } ,

x̄ ≤ ξ , (71)

for the case n = 1. A similar but somewhat more compli-
cated results are obtained for the case n = 2.

This way we obtain an expansion of Hg

Hg(x̄, ξ) =
∑

i

ĉni Hni(x̄, ξ) , (72)
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Fig. 3. Model results for the GPD Hg in the small x̄ range at
t � 0 and for the case n = 1. The solid (dashed, dash-dotted)
line represents the GPD at ξ = 5 (1 , 0.5) · 10−3 and at the
scale 2 GeV

with coefficients following from (68). The evolution of the
GPD is here approximated by that of the gluon distribu-
tion. The dominant contribution to vector-meson electro-
production comes from the imaginary part of the L → L
amplitude (see Sect. 6) which is ∝ Hg(ξ, ξ). Since, to a
good approximation, Hg(ξ, ξ) equals xBj g(xBj) at small ξ
we have approximately taken into account the evolution.
The full evolution of the gluonic GPD is complicated be-
cause of mixing with the flavor-singlet quark GPD. Its
modeling would counteract any possible gain of accuracy
obtained by the inclusion of the full evolution behavior.

The GPD Hg and its derivatives up to order n are
continuous at x̄ = ξ. For ξ � x̄ one can convince oneself
that Hg(x̄, ξ) → x̄ g(x̄) up to corrections of order ξ2. In
the forward limit, ξ, t → 0, the GPD Hg reduces to the
ordinary parton distribution x̄g(x̄). Results for Hg in the
case n = 1 are shown in Fig. 3. For x̄ larger than ξ �
1 there is practically no dependence on the skewness in
contrast to the region x̄ ≤ ξ in accord with the general
behavior of the model GPD just mentioned. The GPDs
for n = 1 and 2 agree with each other on the percent level
at small x̄. As we checked the numerical results for the
cross sections obtained with both these GPDs are very
similar; the differences in the imaginary (real) parts of
the amplitudes are typically smaller than 1(7)%. In the
following we will therefore show only numerical results for
the case n = 1.

Considering the collinear limit of the subprocess am-
plitude (45), one notices a double pole (x̄−ξ+iε)−2 occur-
ring in the T → T amplitude (24) [16]. Partial integration
leads to the integral

∼
∫ 1

0

dx̄

x̄ − ξ + iε
d
dx̄

[
Hg(x̄, ξ)f̃(x̄, ξ)

]
, (73)

where f̃ arises from the subprocess amplitude (45). Since
the derivatives of Hg and f̃ are continuous at x̄ = ξ the in-

tegral exist. The transverse quark momenta are not needed
for the regularization of the T → T amplitude.

A model for the GPD H̃g can be constructed analo-
gously to (63) and (65), the parton distribution g(β) is
only to be replaced by its polarized counterpart ∆g(β).
The continuation to negative β is defined by

∆g(−β) = ∆g(β) . (74)

The GPD H̃g is antisymmetric in x̄

H̃g(−x̄, ξ) = −H̃g(x̄, ξ) . (75)

We take ∆g from [43] and parameterize it analogously to
(68)

β∆g(β) = βδ̃(Q2) (1 − β)5
2∑

i=0

c̃i βi , (76)

where

c̃0 = 3.39 − 0.864 ln(Q2/Q2
0) , (77)

c̃1 = 1.73 + 0.24 ln(Q2/Q2
0) − 0.17 ln2(Q2/Q2

0)

c̃2 = 0.42 − 0.115 ln(Q2/Q2
0) − 0.069 ln2(Q2/Q2

0) ,

and
δ̃(Q2) = 0.78 − 0.173 ln(Q2/Q2

0) . (78)

The GPD H̃q can than calculated analytically for either
case, n = 1 and 2, with, for instance, the help of (71). It is
then represented by a sum analogously to (72). We finally
remark that the polarized gluon distribution and hence
H̃g is subject to much larger uncertainties than Hg.

6 Cross sections

Vector-meson electroproduction in the diffractive region
has been extensively investigated at HERA [12–14,44–46]
for large W and Q2 but small xBj. Preliminary data from
H1 and ZEUS [47–49] extend the range of Q2 for which
electroproduction data are available. In order to confront
the data with the theory developed in the preceding sec-
tions, one has either to extrapolate the data to t � 0 or to
take into account the t dependencies of the GPD and the
subprocess amplitudes. The latter recipe is not straight-
forward. As we mentioned in Sect. 5 it is not easy to find
a plausible parameterization for the t dependence of the
GPD because factorization in t and x̄, ξ most likely does
not hold [38,39]. We therefore use a variant of the first
recipe and multiply the t � 0 amplitudes (24) and (57) by
the exponentials

∼ exp [t BV
i /2] , (79)

with slope parameters BV
i (i = LL, LT, TT for L →

L, T → L, T → T transitions, respectively) adjusted to ex-
periment. The ansatz (79) is in accord with the expected
exponential behavior of the GPDs [37,50]. Differences in
the slope parameters arise from the t dependence of the
subprocess amplitudes.
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In the one-photon exchange approximation the ep →
epV cross section integrated over the azimuthal angle
reads

d3σ(ep → epρ)
dydQ2dt

=
αelm

2π
1 + (1 − y)2

y Q2

[
dσT

dt
+ε

dσL

dt

]
,

(80)
where high-energy, small xBj approximations have been
applied to the phase space factor. Under the same kine-
matical conditions the ratio of longitudinal to transversal
polarization of the virtual photon is given by

ε � 2
1 − y

1+(1 − y)2
, (81)

where y is the fraction of longitudinal electron momentum
carried by the photon:

y =
q · p

ke · p
=

W 2 + Q2

s
. (82)

Here, ke is the momentum of the incident electron and
s = (ke + p)2. The γ∗p → V p partial cross sections in
(80) for transversally and longitudinally polarized virtual
photons are related to the amplitudes (57) by

dσT

dt
=

1
16πW 2 (W 2+Q2)

[ ∣∣MH
++,++

∣∣2+[MH
0+,++

∣∣2 ]
,

dσL

dt
=

1
16πW 2 (W 2 + Q2)

∣∣MH
0+,0+

∣∣2 , (83)

where we made use of (27), (41) and (58). Terms of order
〈H̃g〉2 have been neglected in the cross sections (83); there
is no interference between the Hg and H̃g contributions.

The differential cross section data for ep → epV ex-
hibit a characteristic diffraction peak at small t. The slope
of the diffraction peak is found to be nearly independent
of W but is mildly varying with Q2. Most of the dif-
ferential cross section data for ρ and φ production are
compatible with a single exponential within errors. The
combined H1 and ZEUS data on the slopes in the range
4 GeV2 <∼Q2 <∼ 40 GeV2 can be condensed into

B V
LL = 7.5 GeV−2 + 1.2 GeV−2 ln

3.0 GeV2

Q2 + m2
V

. (84)

This parameterization is in rather good agreement with
experiment, keeping in mind that the experimental slopes
are not always extracted from cross section data in the
same range of t. Possible deviations from a single expo-
nential behavior of the cross sections then lead to different
slopes. We naturally assign the slope (84) to the domi-
nant L → L transition amplitude. The slopes of the other
amplitudes are not well determined as yet. A detailed
analysis of the spin-density matrix elements presented in
Sect. 7, seems to favor the choice BV

LT = 2BV
TT = BV

LL
slightly. These slope values lead to results from our GPD
based approach in fair agreement with the HERA data.
It is to be stressed that the magnitude of the trans-
verse cross section is controlled by the product of pa-
rameters (fV T/MV )2/BV

TT leaving aside the mild Q2 de-
pendence of the slope. The just described fit is based
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2 ]
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Fig. 4. The differential cross section (80) for ep → epρ ver-
sus −t integrated over the kinematical region available to the
ZEUS experiment from which the data are taken [13]. The solid
line is our fit to the data at W = 75 GeV and Q2 = 6 GeV2

(see text). The dashed (dot-dashed, short-dashed) line repre-
sents the individual contributions from the L → L (T → T,
T → L) amplitudes

on the choice MV = mV (see the remark subsequent to
(34)). Taking a smaller value for MV and a correspond-
ing value for the decay constant, the slope BV

TT can be
closer to that one for the L → L amplitude. For instance,
choosing MV = mV /2, one may use BV

TT = BV
LL (for

fρ T = 170 MeV and fφ T = 190 MeV), and one obtains
almost identical results for the cross sections.

As a check of our choice of the slopes we show the
ZEUS data [13] for the differential cross section of ρ pro-
duction in Fig. 4. These data indicate deviations from a
single exponential behavior. They are integrated over the
W and Q2 region accessible to ZEUS; W varies between
32 and 167 GeV in dependence on Q2 which varies be-
tween 3 and 50 GeV2. The associated normalization un-
certainty is of no bearing to us since we are interested
in the process γ∗p → V p. The forward amplitudes (57)
evaluated from the model GPD Hg shown in Fig. 3, mul-
tiplied with the exponentials (79), lead to the results for
the ep → epρ differential cross section shown in Fig. 4.
The agreement between our result and experiment is not
too good. Obviously, the value of the slope taken from
(84) at Q2 = 6 GeV2, is a bit too small. However, the
data shown in Fig. 4, need confirmation. We can also see
from the figure that our results, although obtained with
different slopes, do not deviate from a single exponential
behavior substantially. Also shown in Fig. 4 are the three
individual contributions L → L, T → T and T → L sep-
arately. As expected the L → L contribution dominates.
The T → T contributions amounts to about 25% of the
L → L one at t � 0. Due to the smaller slope BV

TT takes
the lead for −t larger than about 0.4 GeV2. The T → L
contribution is shown only for comparison, it is of no im-
portance for the cross sections.

Let us now turn to the discussion of the process γ∗p →
V p. The integrated cross section for this process is related
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Fig. 5. The integrated cross section for γ∗p → ρp (top) and
γ∗p → φp (bottom) versus Q2 at W � 75 GeV. The data are
taken from [12,44] (filled squares) and [13,45] (open squares)
for ρ and φ production, respectively. The solid lines represent
our results

to the integrated partial cross sections (83) by

σ(γ∗p → V p) = σT(γ∗p → V p) + ε σL(γ∗p → V p) . (85)

The H1 [12,44] and ZEUS [13,45] data on the cross sec-
tions for γ∗p → pV (V = ρ, φ), integrated over the diffrac-
tion peak, are compared to our results in Fig. 5. We repeat
that our results are evaluated from the handbag ampli-
tude (57) multiplied by the exponentials (79) and using
the GPD Hg shown in Fig. 3. Good agreement between
model and experiment is achieved for both processes pro-
vided Q2 is larger than about 4 GeV2.

The HERA experiments also measured the decay an-
gular distributions of the ρ and φ mesons and determined
their spin-density matrix elements. This information al-
lows for a determination of the cross section ratio

R(V ) =
σL(γ∗p → V p)
σT(γ∗p → V p)

, (86)

from which, in combination with (85), the longitudinal
cross section, σL, can be isolated as well. The HERA data
for σL and R are compared to our results in Figs. 6 and 7,
respectively. Again reasonable agreement is to be observed
for Q2 larger than 4 GeV2. The ratio R increases with Q2
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Fig. 6. The integrated cross section for longitudinally polar-
ized photons versus Q2 at W � 75 GeV. Top: γ∗

L p → ρp; bot-
tom: γ∗

L p → φp. The data are taken from H1 [12,44,46] (filled
squares) and ZEUS [13,45] (open squares), respectively. The
solid lines represent our results

since the transverse cross section is suppressed by 1/Q2 as
compared to the longitudinal one; see the hierarchy (41).

The experimental results on cross section ratio are de-
rived from the data on the spin-density matrix element
r04
00. The extracted ratio is therefore the ratio of the dif-

ferential cross sections (83):

R̃(V ) =
dσL(γ∗p → V p)
dσT(γ∗p → V p)

, (87)

which equals the ratio of integrated cross sections, R, only
if both the differential cross sections show the same t de-
pendence6. This is however not the case if the slopes dif-
fer. Therefore, R̃, measured at t � −0.15 GeV2, is about
10–20% larger than R. In Fig. 7 we also display our pre-
diction for R̃. Very good agreement with experiment is to
be seen now. It is to be stressed that the uncertainties of
the gluon distribution [41] entail a typical error of about
30% for our predictions for the cross sections. In the ratios
these errors cancel to some extent. As we remarked a fit

6 For single exponentials the relation between R and R̃ is
given by
R = BTT/BLL exp [−(BLL − BTT)t] R̃(t).
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Fig. 7. The ratio of longitudinal and transverse cross sections
for ρ (top) and φ (bottom) production versus Q2 at W �
75 GeV. The data are taken from [12,44,46] (filled squares)
and [13,45] (open squares) for ρ and φ production, respectively.
The open triangles represent preliminary ZEUS data [48,49]
for ρ and φ electroproduction. The solid (dashed) lines are our
results for the ratio of differential (integrated) cross sections,
R̃ (R). The ratio R̃ is evaluated at t = −0.15 GeV2

with BV
TT � BV

LL is also in agreement with the present
data provided the value of the product (fV T/MV )2/BV

TT
is kept constant. The ratio R for this fit practically falls
together with R̃ in the fit presented above.

In Fig. 8 we display an Argand diagram of the three for-
ward amplitudes for ρ electroproduction at Q2 = 4 GeV2,
t = −0.15 GeV2 and W = 75 GeV. Both MH

0+,0+ and
MH

++,++ are dominantly imaginary while the T → L one
is nearly real. The latter phase is a consequence of the
branch point of

√
x̄2 − ξ2 in (44). The hierarchy (41) is

here seen again. The phase of the ρ production amplitude
MH

0+,0+ at t � 0 is shown in more detail on the top part
of Fig. 8. The real over imaginary part ratio increases with
Q2 and takes values between 0.2 and 0.4 in the Q2 region
of interest. The real part of the L → L amplitude therefore
contributes only about 10% to the cross sections.

A number of comments concerning the leading-twist
contribution [9,11] are in order. As we mentioned above
it is given by the collinear approximation of the dominant
amplitude MH

0+,0+. The salient features of the leading-
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Fig. 8. Top: The ρ production amplitudes for the three tran-
sitions L → L, T → T and T → L at Q2 = 4 GeV2,
t = −0.15 GeV2 and W = 75 GeV. Bottom: Real over imagi-
nary part of the amplitude MH

0+,0+ for ρ production versus Q2

at t � 0 and W = 75 GeV

twist contribution are passed on to the full L → L ampli-
tude, the quark transverse momenta and Sudakov suppres-
sions essentially affect its absolute value. The examination
of the leading-twist contribution therefore elucidates many
properties of our results in a simple way. Neglecting the
k⊥ terms in (43) and using the standard definition of the
meson distribution amplitude

fV L

2
√

2Nc

ΦV L(τ) =
∫

d3k⊥
16π3 ΨV L(τ, k2

⊥) , (88)

we obtain the subprocess amplitude HV
0+,0+ in collinear

approximation from (42) and, inserting it into (24), the
leading-twist contribution to the L → L amplitude

Mcoll
0+,0+ (89)

= e
8παsfV L

NcQ
〈1/τ〉V L CV

∫ 1

0
dx̄

Hg(x̄, ξ)
(x̄ + ξ)(x̄ − ξ + iε̂)

.
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The 1/τ moment of the meson’s distribution amplitude
ΦV L occurring now, is denoted by 〈1/τ〉V L. For the wave-
function (47) the associated distribution amplitude is the
asymptotic form (48) which leads to a value of 3 for the
1/τ moment.

We can now easily understand the growth of the real
over imaginary part ratio with Q2. Applying the deriva-
tive analyticity relation [51], frequently but unjustifiedly
termed the local dispersion relation [52], to the imaginary
part of the leading-twist amplitude (89),

Mcoll
0+,0+ �

[
i − π

2
∂

∂ lnxBj
xBj

]
Im Mcoll

0+,0+ , (90)

and using the low-ξ behavior of the model GPD Hg(ξ, ξ) =
c̄0(2ξ)−δ (see (71)), we find

ReM coll
0+,0+/ ImM coll

0+,0+ � 1
2

π δ(Q2) . (91)

The increase of δ with Q2 (see (70)) which has been cal-
culated by the CTEQ group [41] with the help of QCD
evolution, is what we see at the top part of Fig. 8.

Up to corrections from the real part the integrated
longitudinal cross section reads

σcoll
L =

16 π 4

N 2
c

αelm

B V
LL Q 6

[
αs fV LCV 〈1/τ〉V L

] 2 |Hg(ξ, ξ)| 2 ,

(92)
in collinear approximation. The ratio of the φ and ρ cross
sections is given by (fφLCφ/fρLCρ)2. Our results shown
in Figs. 5 and 6, approach this value with increasing Q2.
Due to the behavior of Hg(ξ, ξ) at small ξ the cross section
behaves as

σcoll
L ∝ W 4δ(Q2) , (93)

at fixed Q2 and small xBj. The power behavior (93) comes
about as a consequence of the behavior of the GPD and
the underlying gluon distribution. We note in passing that
in the Regge picture [2] the exponent δ(Q2) is associated
with pomeron exchange. The intercept of the pomeron
trajectory is related to δ by αP (0) = 1 + δ(Q2). In the
Regge model δ is a free parameter.

In Fig. 9 we display the cross section for γ∗p → ρp as
a function of W for sample values of Q2. Fair agreement
between experiment and our predictions is to be seen. The
W dependence of the predictions from the full approach
is very close to that given in (93). Deviations from the
power law at lower values of W , to be observed in Fig. 9,
arise from various corrections to the leading-twist contri-
bution we take into account, such as the quark transverse
momenta, the T → T amplitude and the real parts of the
L → L amplitude. This interpretation of the power behav-
ior of σL is supported by a comparison of δ as taken from
the analysis presented in [41], with the powers obtained
from fits to the cross section data [12,13]. Rough agree-
ment between both results is to be seen in Fig. 9, although
the errors of the HERA data do not permit a definite con-
clusion as yet. Preliminary HERA data seem to improve
the agreement.
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Fig. 9. Top: The integrated cross section for γ∗p → ρp versus
W for five values of Q2. The data are taken from [12]. The solid
lines represent our result. Bottom: The power δ versus Q2 for
ρ electroproduction. The solid curve represents the power as
determined in [41] with an error estimate given by the shaded
band. The data are taken from [12] (•) and [13] (◦)

For very small ξ one can estimate the size of the
collinear contribution using the leading terms in the model
GPD (71). One obtains

σcoll
L (γ∗p → ρp)

= 5.72 µb GeV6
( αs

0.3

)2
(

7.5 GeV−2

B ρ
LL

) (
c̄0(Q2)
2.33

)2

×
( 〈1/τ〉ρL

3

)2 (2ξ)−2δ(Q2)

Q 6 , (94)

where c̄0 = c0/[(1 − δ/3)(1 − δ/2)] is the coefficient of the
first term in the power series of Hg (72) associated with
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Fig. 10. Ratios of the GPDs and the parton distribution for
the n = 1 and 2 models at a scale of 4 GeV2

(68). This cross section is rather large, well above exper-
iment. The quark transverse momenta and the Sudakov
factor suppress it such that agreement with experiment is
found; see Fig. 6.

Exploiting the leading ln(1/xBj) approximation, Brod-
sky et al. [4] found a result7 that equals (92) except
that Hg(ξ, ξ) is replaced by the usual gluon distribution
xBjg(xBj) (see also [53]). At very small ξ, i.e. if ξ is so small
that the first terms in (68) and in the corresponding GPD
(72) suffice, the usual gluon distribution and the GPD only
differ by about 20% resulting from the difference between
c0 and c̄0. For larger ξ, however, the difference between
both functions becomes substantial, growing up to about
a factor of 1.6–2 at ξ = 0.1; see Fig. 10. The use of the
ln(1/xBj) approximation at values of ξ around 0.1 may
therefore lead to an underestimate of the gluonic contri-
bution to the cross sections by a factor 3 to 4. We repeat
that, in contrast to the ln(1/xBj) approximation, we do
not require a small ξ in principle. We only restrict our-
selves to small ξ in order to avoid complications with po-
tential contributions from quarks emitted and reabsorbed
by the proton. The enhancement effect apparent in Fig. 10
is known as the skewing effect and has been discussed by
several authors [8,15,54,55]. The size of the skewing effect
estimated in these papers is compatible with our model re-
sult for ξ � 1.

In any case the leading-twist as well as the ln(1/xBj)
result provide cross sections that are too large. In order to
settle this problem for the ln(1/xBj) approximation Frank-
furt et al. [6] estimated a correction factor by allowing
for quark transverse momenta in the loop. This mecha-
nism bears resemblance to our approach as we mentioned
in Sect. 3. The correction factor obtained in [6] is large
enough to achieve agreement with experiment. This fac-

7 Note that in [4] the decay constant includes the flavor
weight factor CV .

tor has also been used by Mankiewicz et al. [15] in an
explorative study of σL in an otherwise collinear GPD ap-
proach. Martin et al. [8] exploited the ln(1/xBj) approxi-
mation in their analysis of vector-meson electroproduction
by including parton transverse momenta and an uninte-
grated gluon distribution.

7 Spin density matrix elements

With the help of (27), (41) and (58) the spin-density ma-
trix elements extracted from the decay angular distribu-
tions measured with unpolarized leptons and protons [34],
simplify to (R̃ is defined in (87))

NL = 2
∣∣ MH

0 +,0 +

∣∣2 ,

NT = 2
[ ∣∣MH

++,++

∣∣2 +
∣∣MH

0 +,++

∣∣2 ]
,

r04
00 =

1
1 + εR̃

[
2

NT

∣∣MH
0+,++

∣∣2 + εR̃

]
,

Re r04
10 = −Re r1

10 = Im r2
10

=
1

1 + εR̃

1
NT

Re
[MH

++,++ MH∗
0 +,++

]
,

r1
00 =

−1
1 + εR̃

2
NT

∣∣MH
0 +,++

∣∣2 ,

r1
1−1 = −Im r2

1−1

=
1

1 + εR̃

1
NT

∣∣MH
++,++

∣∣2 ,

r5
00 =

4√
2NL NT

√
R̃

1 + εR̃
Re

[MH
0 +,0 + MH∗

0 +,++
]

,

Re r5
10 = −Im r6

10 (95)

=

√
R̃

1 + εR̃

1√
2NL NT

Re
[MH

++,++ MH∗
0 +,0 +

]
,

while

r04
1−1 = r1

11 = r5
11 = r5

1−1 = Im r6
1−1 = 0 , (96)

because of the neglect of L → T and T → −T transi-
tions. The relations (95), obtained in the GPD approach
under the assumption of the dominance of the Hg terms,
coincide with those found assuming dominance of natu-
ral parity t-channel exchanges and the neglect of proton
helicity flip [12,34]. The contributions from H̃g enter the
spin-density matrix elements only as bilinears; there are
no interferences between Hg and H̃g terms.

The data for the spin-density matrix elements from H1
[12,44] and ZEUS [14] are shown in Figs. 11 and 12 and
compared to the results from the GPD based approach.
The general pattern of the data is reproduced. The domi-
nance of the L → L transition amplitude is clearly visible
in the angular distribution of the production and decay of
the vector mesons, in particular in the value of r04

00 which
tends towards 1 with increasing Q2. This behavior is well
reproduced by our approach as we already discussed in
connection with the cross section ratio R.
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Fig. 11. The spin-density matrix elements of electro-
produced ρ mesons versus Q2 at W � 75 GeV and
t � −0.15 GeV2. The data are taken from [12] (filled
circles) and [14] (open circles); they are compared to our
results (solid line). Preliminary data on r04

00 from ZEUS
[48] (open triangles) are also shown

The T → L amplitude is probed by the matrix
elements r1

00 and r5
00. While the first matrix element

is approximately ∝ |MH
0+,++|2/|MH

0+,0+|2, the ratio
Im MH

0+,++/Im MH
0+,0+ essentially controls the second.

Both r5
00 and |r1

00| are found to be rather small. The
ratio of the T → T and L → L amplitudes is approxi-
mately measured by r1

1−1 and Re r5
10, quadratically in the

first case; linearly in the second one since the two ampli-
tudes have about the same phase as is shown in Fig. 8.
The fair agreement between theory and experiment for
these spin-density matrix elements tells us that our ap-
proach provides the correct sizes and relative phases of
the T → T and L → L amplitudes. The matrix elements
Re r04

10 = −Re r1
10 = Im r2

10 measure an interference term
between the T → T and T → L amplitudes which is very
small. Also this prediction is in acceptable agreement with
experiment.

The t dependence of the spin-density matrix elements
confirms the above observations; see Fig. 13. The T → L
sensitive matrix elements behave proportional to

√−t or
t while those controlled by the ratios of the T → T and
L → L amplitudes exhibit an t dependence according to

the different slopes chosen for them. As we mentioned in
Sect. 6 the freedom in choosing a suitable value of MV also
allows for fits with BV

TT � BV
LL. While the transverse cross

section is nearly insensitive to this choice provided the
product (fV T/MV )2/BV

TT is approximately kept fixed, the
t dependence of some of the spin-density matrix elements
(e.g. r04

00, r1
1−1) changes; they become very flat in t. Given

the accuracy of the present data [12] such a behavior is
not in conflict with experiment.

Finally, in Fig. 14 we show our predictions for φ elec-
troproduction at W = 10 GeV characteristic of the COM-
PASS experiment.

Other theoretical analyses [7,56–58] of the spin-density
matrix elements are based on variants of the ln(1/xBj)
approximation. The variants differ from each other in the
detailed treatment of the subprocess γ∗g → qq̄g. The same
hierarchy of the amplitudes are obtained as we find and,
in general, rather similar results are obtained for the spin-
density matrix elements. Worth mentioning is the different
phase of the T → L amplitude and a somewhat different
t dependence of the matrix elements.
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Fig. 12. The spin-density matrix elements for φ elec-
troproduction versus Q2 at W � 75 GeV and t �
−0.15 GeV2. The H1 data [44] are compared to our re-
sults (solid line)

8 The helicity correlation

Finally, we want to discuss the role of the GPD H̃g. For
this purpose we consider the initial state helicity correla-
tion ALL which can be measured with longitudinally polar-
ized beam and target. After integration over the azimuthal
angle this correlation reads

ALL[ep → epV ] =
√

1 − ε2

32πW 2(W 2 + Q2)
(97)

×
∣∣M++,++

∣∣2 +
∣∣M0 +,++

∣∣2 − ∣∣M−+,−+
∣∣2 − ∣∣M0 +,−+

∣∣2

dσT/dt + εdσL/dt
,

where the amplitudes and cross sections refer to the pro-
cess γ∗p → V p and are given in (24) and (83). As can eas-
ily be seen from (58) ALL = 0 if the H̃g terms are neglected
as we did in the preceding sections. Yet in contrast to the
cross sections and spin-density matrix elements where the
corrections are bilinear in the H̃g terms and, hence, ex-
tremely small, the leading term in ALL is an interference
between the Hg and the H̃g terms. In fact, with the help

of (27) and (58), one obtains from (97)

ALL[ep → epV ] = 2
√

1 − ε2
Re

[
MH

++,++ MH̃∗
++,++

]
ε|MH

0+,0+|2 + |MH
++,++|2 .

(98)
Obviously, this ratio is of order 〈k2

⊥〉/Q2 〈H̃g〉/〈Hg〉 and,
therefore, very small values for ALL are to be expected.
Indeed exploiting the model GPDs presented in Sect. 5 we
confirm this assertion as can be seen from Fig. 15 where
results for ALL for ρ and φ electroproduction at t � 0
are displayed. The results for ρ production, only shown
at W = 15 GeV, are compared to the SMC data [59]. At
this energy and in the range of Q2 shown in the plot, the
contribution from the quark GPD is expected to be small
[17]. Our results for ALL are not in disagreement with
experiment given the admittedly large experimental errors
and the rather large value of the skewness. Results for
φ electroproduction are shown at energies typical for the
HERMES and COMPASS experiments. The dominance of
the gluon over the sea quarks permits this. At W = 5 GeV
ALL is not very small since the major contribution to it
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Fig. 13. The spin-density matrix elements of electro-
produced ρ mesons versus t at Q2 = 5 GeV2 and W �
75 GeV. The data are taken from [12] (filled circles). The
solid (dashed) lines represent our results for the choice
BV

TT = BV
LL/2 (BV

LL)

comes from the region 0.1 <∼ x̄ <∼ 0.2 where ∆g/g is not
small.

The proton helicity flip contribution, related to the
GPD Eg, may change these results but likely not substan-
tially. The helicity correlation will increase with growing
momentum transfer if the slope of the T → T amplitude
is smaller than that of the L → L one. Besides allowing for
predictions for ALL this calculation also supports our as-
sumption of negligible contributions from H̃g to the cross
sections and spin-density matrix elements.

9 Summary

We analyzed electroproduction of light vector mesons at
small xBj within a GPD based approach. In this kine-
matical domain the gluonic GPD Hg, parameterizing the
response of the proton to the emission and reabsorption
of gluons, controls the process. The gluonic GPD, not cal-
culable at present, is constructed from an ansatz for the
double distributions currently in use. In order to examine
the influence of the model GPD on the numerical results
for vector-meson electroproduction we used two different

versions for it (n = 1 and 2). The differences in the nu-
merical results obtained from these two models are on the
percent level. The subprocess amplitudes for γ∗g → V g
are calculated by us to lowest order of perturbative QCD
but transverse momenta of the quark and antiquark that
form the vector meson are taken into account as well as
Sudakov suppression, which sums up gluonic radiative cor-
rections.

The GPD approach reproduces all main features of
vector-meson electroproduction at small xBj known from
phenomenology. The dominance of the contributions from
the GPD Hg over those from H̃g and Eg leads to
the relations (58) and, hence, to results equivalent to
those obtained assuming the dominance of natural par-
ity exchange. Approximate s-channel helicity conservation
holds due to the hierarchy (41) the amplitudes respect in
our GPD based approach. The behavior of the longitudi-
nal cross section as a Q2 dependent power of W at fixed
Q2 is a consequence of the low ξ properties of the GPD and
QCD evolution. The numerical results we obtain from our
approach are in reasonable agreement with the small xBj
data on cross sections and spin-density matrix elements
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Fig. 14. The spin-density matrix elements of electropro-
duced φ mesons versus Q2 at W � 10 GeV, y � 0.6 and
t � −0.15 GeV2. The solid lines represent our results
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Fig. 15. Left: The helicity correlation ALL for ρ electroproduction versus Q2 at W = 15 GeV, t � 0 and y � 0.6. The data
are taken from SMC [59]. Right: ALL for φ production at W = 5 GeV (solid line) and W = 10 GeV (dashed line); y � 0.6. The
shaded bands reflect the uncertainties in our predictions due to the error in the polarized gluon distribution [43]
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for electroproduction of ρ and φ mesons measured by H1
and ZEUS. The t dependence of vector-meson electropro-
duction is not yet satisfactorily settled. In principle it is
generated by a combination of the t dependence of the
GPD and, with less importance, that of the subprocess
amplitudes. Due to the lack of a plausible parameteriza-
tion of the t dependence of the GPD we have evaluated
the electroproduction amplitudes at t � 0 and multiplied
them by exponentials in t. Improvements on this recipe
are demanded and will be unavoidable as soon as detailed
differential cross section data are at hand.

We also compared in some detail our approach to the
leading-twist contribution and to the leading ln(1/xBj)
approximation. The latter is rather close to the GPD
approach at low xBj and small t but not identical. For
xBj larger than about 0.01 the replacement of Hg(ξ, ξ)
by 2ξg(2ξ) becomes inappropriate. The GPD has, in con-
trast to the leading ln(1/xBj) approximation, the potential
to investigate the t dependence of electroproduction. The
lack of understanding of the GPD’s t dependence prevents
this at present.
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